Randomized multi-centre study on the effect of training on tooth shade matching

C. Olms a,*, Th. Klinke b, P. Pirek c, W.B. Hannak d

a Department of Prosthodontics and Material Science, University of Leipzig, Leipzig, Germany
b University of Greifswald, Dental School, Department of Prosthodontics, Gerodontology and Dental Materials, Greifswald, Germany
c Department of Prosthodontics, Palacky University, Olomouc, Czech Republic
d Charité – Universitätsmedizin Berlin, Department of Prosthodontics, Geriatric Dentistry and CMD, Berlin, Germany

A R T I C L E I N F O

Article history:
Received 8 December 2012
Received in revised form 10 September 2013
Accepted 13 September 2013

Keywords:
Tooth colour
Shade guide
Dental education
Aesthetics
Colour matching
Prosthodontics

A B S T R A C T

Objectives: The aim of this study was to find out whether Toothguide Trainer, TT, and Toothguide Training Box, TTB, show any training effects, independent of the shade guide chosen.

Methods: Students from four dental schools (N = 78) were included in this study. The participants were randomized into a study, 42 students (age range: 19–27 years; 69% female, 31% male) and a control group of 36 students (age range: 19–30 years; 57% female, 43% male). The study group started with a double blind introduction test, followed by the TT and TTB training, finishing with the final test. The control group only passed the introduction and after a break – the final test. Eight randomly chosen samples, seven of the Vita classical and one of the 3D-Master colour scale, were marked by barcodes. Colour matching was arranged by the Vita classical scale.

Results: The results of the pre- and final tests of both groups were combined. For every sample, the value ΔE was determined. The summation of all eight samples from the introduction and final tests offered a summarized ΔE value. The differences between introduction and final tests revealed the individual learning success. 47.6% of the study group showed statistically significant better results than the control group, 33% (p = 0.031).

Conclusion: TT and TTB show a positive effect of training on tooth shade matching independent of the colour scale used.

Clinical significance: Visual shade taking is the most frequent clinical method for shade determination. To increase better results in visual colour matching, TT and TTB training is used. This is the first study examining the training effect of TT and TTB using Vita classical scale.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Visual and electronic tools can be used for tooth shade determination to enable the communication between practices and laboratories.1-6 A study which included a survey of European students of dentistry in 2011 showed that visual shade determination with Vitapan Classical (17–67%) and the “VITA” 3D-Master (0–47%) was the most frequently taught method of shade taking. Only a minority of the students (2–47%)
was introduced into digital shade taking.7 The examination of Paravina et al.8 exhibited that Vitapan Classical and “VITA” 3D-Master were the most popular shade guides.

Several surveys on teaching colour have been accomplished in the last 40 years.2,8–10 The percentage of programmes with courses on “colour” or “colour in dentistry” has increased over the years.2,8–10

Previous studies have demonstrated a training effect in shade differentiation.11,12 On one hand there are various training systems, with pure colour training exercises.7 On the other hand, there are training programmes that are based directly on a specific shade taking system, such as the shade curriculum developed at the University of Leipzig.2,13 This shade curriculum has been an element of preclinical training in Leipzig since 2004.14 The universities of Berlin, Greifswald, Heidelberg, Halle (Saale), Budapest, Beirut and Passo Fundo for example, have also integrated this programme into their curricula. The programme has been developed especially for the 3-step shade matching method and includes TT software program and TTB. TT displays a virtual VITA 3D-Master on the monitor. Students learn the use of VITA 3D-Master in three steps (1st lightness, 2nd chroma, 3rd hue). The training is performed under standardized lighting conditions using the TTB with a real colour scale. Independently conducted studies showed that the training of participants lead to improvement in colour matching results.24,15 Moreover, in a study on the simulation of colour blindness, improvement could be achieved for participants with colour vision deficiency subsequent to the training with TT and TTB.16 Fact is that Vitapan and its derivations were probably the most commonly used shade guides7 and used in dental training. It was also the aim to examine the effect of training with TT and TTB on shade taking using the Vitapan Classical. The objective of this multi-centre study was to prove, that visual shade differentiation might be learned using TT and TTB independent of the colour scale used. The specific hypothesis was that training with TT and TTB resulted in an improvement of visual shade determination using Vitapan Classical.

2. Materials and methods

Students (N = 78) of four international universities (Berlin (N = 43), Leipzig (N = 25), Greifswald (N = 5) (all Germany), Olomouc (N = 5) (Czech Republic) participated in the study at Science Day in Berlin 2011. The participants were students of the first preclinical semester and had been educated in colour differentiation at their universities before this examination began. The test series were performed independently of the TT and TTB curriculum. The students had not obtained any training in visual tooth shade determination until that date. They participated voluntarily. The study protocol had been approved by both dental schools of Berlin and Leipzig on the basis of research results. All students gave informed consent prior to their participation in the study. At the beginning, an Ishihara Test was performed to exclude students with impaired colour vision. The group test consisted of 24 illustrations, which were projected by a calibrated beamer. Participants with more than two errors were excluded.17 Afterwards students were randomly divided into two groups: a study group and a control group. The study group consisted of 42 students: 31% (N = 13) of them were male and 69% (N = 29) were female. The average age was 22.4 years (19–27 years). The control group consisted of 36 students: 57% (N = 21) were female and 43% (N = 15) were male. The average age was 24.4 years (19–30 years).

Each participant of the study group and the control group had undergone a double-blind initial and final test. In random order, the participants received eight shade tabs. Seven of the eight tabs were taken from the Vitapan Classical shade guide (B4, A1, C4, C2, D3, A3, C3), and one tab was taken from the 3D shade guide (3M3). The shade tabs were marked with bar codes so that they could not be classified by the participants neither the recorder. The original Vitapan Classical shade guide (A-to-D arrangement) was used for shade determination with the instruction “select the best match”. The participant identified the tab he had received using the Vitapan Classical codes, while the recorder entered the value into a table. Numerical codes were used for anonymisation of the participants. Shade matching was conducted under defined lighting conditions. The participants used hand help lamps (5500 K, shade-taking lamps, System Eickhorst, Hamburg, Germany) under natural surrounding light conditions (daylight).

After the initial test, the study group completed the training programme with TT and TTB. 90 min later there was the final test. The control group did not receive any training. The final test was done after a break of 90 min between initial and final test. The lists with the results of the initial and final tests were calculated and the distance in the colour space (ΔE) was determined for each shade tab. Colour difference between task tab and selected tab was computed as follows:18

\[
\Delta E = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}
\]

On the basis of L’(a’b’) values provided by the manufacturer it was possible to denote differences in lightness, chroma and hue, ΔL*, Δa*, Δb*. For the shade tab of the 3D shade guide, the smallest possible colour distance of the determination process was set to 0 by subtracting the amount. Thereby it was possible to compare the results of 3M3 shade tab with the other shade tabs of this study.

As a result, a summarized ΔE value was obtained for all shade tabs of the initial and final test. The change in the sums of the differences between initial and final test represented the extent of the individual learning success to be assessed. In case the sum of the final test was smaller than the one of the initial test, a personal training effect for the participant could be proven. Positive differences indicated an improvement between the initial and the final test. The higher the positive value the larger the degree of improvement. An advancement of ΔE at more than 2 was classified as clinically relevant. Negative values indicated deterioration. The summation of the ΔE data had been adopted in previous similar studies with TTB.16,19,20 It is therefore possible to compare the results among each other. The control group and the study group were stratified (same number, age and sex).

Means and standard deviation were calculated. Student’s T-test and Mann–Whitney U-test were used for statistical analysis of the data (α = 0.05).21 Data analysis was performed using SPSS 10.0 for Windows (SPSS, Chicago, IL).
3. Results

The evaluation of the Ishihara Test did not reveal colour vision deficiency in any of the participants. The study group achieved noticeable improvement in shade selection. The averages of the ΔE values calculated were higher than those of the control group. This result was significant. 47.6% of the study group showed statistically significant better results than the control group, 33% ($p = 0.031$). The results were summarized in Table 1. A summary of the calculated ΔE values of the initial and final tests is shown in Table 2. The highest difference between the initial and the final test resulted for the shade sample B4. There was no significant difference of the ΔE values ($\Delta E \sim 2$) between the initial and final test for the 3M shade specimen. Colour matches were obtained for all seven shade tabs of the Vitapan Classical shade guide. There was no shade match for the 3M shade tab. The lowest ΔE values were determined for the B4 and A1 shade tabs. The highest deviation from ΔE was recorded for the C2 shade tab. There was no correlation between the excellent training results with TTB and a low rate of error during the final test. One participant produced a very high error rate in the final test following a poor result of training with TTB.

4. Discussion

Based on the results, the hypothesis was confirmed. A significant improvement of colour differentiation with Vitapan Classical shade guide could be achieved and determined by the curricular training programme with TT and TTB (including lecture for education).

In order to obtain a highly reliable result, the study was conducted with participants from various universities. The procedure was based on a standardized study protocol. The participants were students in the first preclinical semester without any practical experience in tooth shade matching.

Among all various factors that influence tooth colour differentiation, education in colour science and clinical experience plays a significant role in visual colour shade matching.22,23 In a study by Capa et al., evidence could be furnished that experience in tooth shade determination led to better results.24 The study by Jaju et al.25 showed that education and knowledge of colour science combined with clinical experience improved students’ abilities in colour matching. To eliminate participants with colour vision deficiencies, an Ishihara Test was carried out. The Ishihara Test is mainly used for the screening of congenital protan and deuteran defects.26 The study by Bratner et al. showed that the Ishihara Test (beamer projection) was suitable to precisely verify the colour vision abilities of larger groups of persons.27 Seven of the eight tabs were taken from the Vitapan Classical shade guide. For a higher level of difficulty, one tab of the “VITA” 3D-Master (3M) with a mean lightness was used. The participants had to choose the best match with the Vitapan Classical.

Shade differentiation by application of Vitapan Classical (shade guide) was performed for the study at hand. It is the most frequently used shade guide at European universities.7 Vita Classical are not grouped systematically, and shade matching is a matter of choosing the best fitting sample out of a relatively large group of samples. The development of the 3D-Master shade guide established a more systematic approach towards shade matching in dentistry. The 3D-Master application divides the shade matching process into three steps: matching of lightness, chrome and hue. TT and TTB were developed for training “dimension-by-dimension” shade matching. There are only studies examining the learnability of tooth colour matching by TT and TTB using the 3D-Master guide. The study of Kroszewsky and Jakstat included 38 students of the first preclinical semester.13 The

| Table 1 – The averages of ΔE values in study and control group. |
|-----------------|------|------|-------------|-------------|-------------|
| **Group** | **N** | **Mean** | **Median** | **Standard deviation** | **95% conf.** | **99% conf.** |
| Study | 42 | 5.5 | 2.4 | 10.2 | 3.6 | 4.8 |
| Control | 36 | −0.7 | −1.5 | 10.2 | 6.4 | 8.6 |

| Table 2 – Summary of calculated ΔE of initial and final tests. |
|-----------------|------|-------------|-------------|-------------|
| **Mean** | **Median** | **Standard deviation** | **Standard error** | **95% conf.** | **99% conf.** |
| Pre-B4 | 2.1 | 2.4 | 2.6 | 0.4 | 0.8 | 1.1 |
| Post-B4 | 0.9 | 0 | 1.5 | 0.2 | 0.5 | 0.6 |
| Pre-A1 | 3.1 | 0 | 2.2 | 0.3 | 0.7 | 0.9 |
| Post-A1 | 3.1 | 0 | 2.2 | 0.3 | 0.7 | 0.9 |
| Pre-C4 | 2.3 | 0 | 4.8 | 0.7 | 1.5 | 2.0 |
| Post-C4 | 3.1 | 0 | 5.7 | 0.9 | 1.8 | 2.4 |
| Pre-C2 | 3.0 | 1.3 | 3.6 | 0.6 | 1.1 | 1.5 |
| Post-C2 | 3.8 | 2.6 | 3.7 | 0.6 | 1.2 | 1.6 |
| Pre-D3 | 3.1 | 4.6 | 3.1 | 0.5 | 1.0 | 1.3 |
| Post-D3 | 2.4 | 0 | 2.9 | 0.5 | 0.9 | 1.2 |
| Pre-A3 | 3.5 | 4.6 | 3.4 | 0.5 | 1.1 | 1.4 |
| Post-A3 | 2.6 | 0 | 3.2 | 0.5 | 1.0 | 1.4 |
| Pre-C3 | 3.7 | 2.6 | 4.7 | 0.7 | 1.5 | 2.0 |
| Post-C3 | 2.8 | 0 | 4.2 | 0.6 | 1.3 | 1.7 |
| Pre-3M3 | 2.8 | 2.4 | 1.1 | 0.2 | 0.3 | 0.4 |
| Post-3M3 | 2.8 | 2.4 | 1.1 | 0.2 | 0.3 | 0.4 |
individual evaluation showed that these students achieved a significant improvement of 28.8% (p < 0.05). In the study by Hannak et al., participants of one group were trained with TT and TTB whereas the control group had only visual training with the 3D-Master shade guide.28 The control group showed significantly worse results (p < 0.01). Both studies used the three step method for initial and final test. The learning methods for shade determination were evaluated in the study by Corcodel et al.11 An introduction into tooth shade determination and the application of VITA 3D-Master (shade guide) was given. Both test groups were trained with the TT software. Further studies will have to prove whether there is a difference in success of training with the software itself or in combination with the TTB. In a study with 77 participants, Wünne28mann confirmed the learnability of tooth shade differentiation using TT and TTB.29 Moreover, Wünne28mann found that the training programme also had a positive effect on the selection of the shade applying Vitapan Classical (shade guide). In the study by Llena et al.,30 the participants with a high score in final test TT training (>895) obtained a significantly higher mean success by application of 3D-Master than those with lower scores. In the present study, no correlation could be found between excellent training results with TTB and a low rate of error in the final test. Currently it is being investigated whether a curriculum of colour matching over a longer period of time may result in an improved learning effect.

5. Summary

Visual shade taking is the most frequent applied clinical method for shade matching these days. The current study proved that the shade curriculum – consisting of TT and TTB – shows a positive effect of training on tooth colour matching independent of the colour scale used.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Acknowledgement

We would like to thank Vita Zahnfabrik, Bad Saeckingen, Germany for the support in conducting this study and for providing TT and TTB.

References

